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Two‑stage algorithms for visually 
exploring spatio‑temporal 
clustering of avian influenza virus 
outbreaks in poultry farms
Hong‑Dar Isaac Wu1 & Day‑Yu Chao2*

The development of visual tools for the timely identification of spatio-temporal clusters will assist in 
implementing control measures to prevent further damage. From January 2015 to June 2020, a total 
number of 1463 avian influenza outbreak farms were detected in Taiwan and further confirmed to be 
affected by highly pathogenic avian influenza subtype H5Nx. In this study, we adopted two common 
concepts of spatio-temporal clustering methods, the Knox test and scan statistics, with visual tools 
to explore the dynamic changes of clustering patterns. Since most (68.6%) of the outbreak farms 
were detected in 2015, only the data from 2015 was used in this study. The first two-stage algorithm 
performs the Knox test, which established a threshold of 7 days and identified 11 major clusters in 
the six counties of southwestern Taiwan, followed by the standard deviational ellipse (SDE) method 
implemented on each cluster to reveal the transmission direction. The second algorithm applies 
scan likelihood ratio statistics followed by AGC index to visualize the dynamic changes of the local 
aggregation pattern of disease clusters at the regional level. Compared to the one-stage aggregation 
approach, Knox-based and AGC mapping were more sensitive in small-scale spatio-temporal 
clustering.

In Asia, Europe, and North America, the emergence and intercontinental spread of the highly pathogenic avian 
influenza A (HPAI) H5Nx virus clade 2.3.4.4 has caused substantial economic losses to the poultry industry1. As 
a critical stop-over site for migratory birds along the flyway of Asia, Taiwan has experienced epidemics caused 
by multiple introductions of different HPAI novel subtypes of clade 2.3.4.4 virus in the past years2,3, making the 
control of the spread of avian influenza a challenging issue in public health. Due to the extreme vulnerability of 
the poultry industry and its potential economic losses, a sensitive statistical tool for the timely identification of 
clusters and visualization of their dynamic change would be invaluable in implementing more stringent control 
measures and determine potential factors, such as vehicle transportation or wild birds, for virus spread.

Essential steps in identifying spatial clusters of any infectious disease, such as HPAI, include (1) identification 
of areas having exceptionally high (or low) events; (2) determination of whether the abnormal counts of events 
can be attributed to chance variation or is statistically significant; (3) assessment of explanatory factors that may 
account for such abnormal clustering. However, accurately identifying the spatial clusters and predicting the 
direction of viral spread requires the knowledge of several environmental factors with spatial structures, which 
are not only non-randomly distributed across a country but are also changing with time. There are many research 
articles devoted to modeling the spatial and temporal diffusion of various infectious diseases4–8. Although some 
of them applied complex spatial statistics to detect a series of epidemiological anomalies, the most popular 
method is spatial scan statistics proposed by Kulldorff in 19979. The SaTScan software, developed by Kulldorff 
et al. in 1998, applying space–time scan statistics with the option of different distributions, such as binomial or 
Poisson, has been widely used globally. However, the disadvantages of scan statistics are (1) the need to have the 
prior knowledge of a reference population; (2) the arbitrary selection of a window size for reference population 
and time, which requires trial-and-error to find the optimal cutoff value; (3) the events within the pre-defined 
space or time prevent application to the detection of abnormal events under a certain network, such as highway 
or water supply. On the contrary, another commonly used method, the Knox test, can determine the proper scale 
of space and time objectively without the prior knowledge of a reference population10,11.
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In this study, we improved two common concepts of spatiotemporal clustering methods, including the Knox 
test and scan statistics, and proposed the two-stage algorithms for visually exploring spatio-temporal clustering, 
using HPAI poultry farm outbreaks during 2015 in Taiwan as the example. The first two-stage algorithm performs 
the Knox test followed by the standard deviational ellipse (SDE) method12–15 and the second algorithm applies 
scan likelihood ratio statistics followed by AGC index to visualize the dynamic changes of the local aggregation 
pattern of disease clusters at the regional level. Both SDE and AGC maps along a regular time interval provide 
the visual ways of indicating the direction of virus transmission.

Materials and methods
Dataset.  The details of the dataset collections including outbreak poultry farms and total poultry distribu-
tion were described previously2. In short, the data of HPAI outbreaks used in this study were collected based 
on both the nationwide mandatory clinical disease reporting system (CDRS) and active surveillance program, 
implemented by the Bureau of Animal and Plant Health Inspection and Quarantine (BAPHIQ), Council of 
Agriculture (COA). The nationwide CDRS was established in 2003 due to the first H5N2 poultry farm out-
breaks in Taiwan. All poultry farmers are mandated to report poultry health problems or unusual increases in 
mortality events to local animal disease control centers (LDCCs), which are further compiled by BAPHIQ. The 
total poultry farm census data was obtained by spatially merging the official poultry farm registration database 
(OPFRD) managed by the COA, with an island-wide domestic waterfowl farms survey conducted by the Taiwan 
Agriculture Research Institute (TARI) utilizing remote satellite imaging technology between August 2016 and 
April 2017. All data were projected in TWD97/TM2 zone 121 and geocoded using WGS84 datum by ArcGIS, 
version 10.3 (ESRI, Redlands, CA, USA) for mapping and visualization with high resolution. From 2015 to June 
2020, the total number of avian influenza outbreak farms with laboratory-confirmation is 1,463. Since most 
(68.6%) of the outbreak farms were detected in 2015, only the data in 2015 was used for analysis in this study.

Knox method.  Based on the method proposed by Knox10, we searched all possible pairs close in space and 
time to obtain the maximum odds ratio to generate the optimum association. To assess the significance, no rig-
orous statistical method has been developed as a formal test to give an exact or approximate (in terms of large 
sample theory) p-value for two-dimensional searching, i.e. space–time in this case, for optimal cutoff points, 
although Mantel (1967) proposed to use the permutation methods16. However, a formal test is not what we 
pursued here. Instead, a visual technique to explore spatio-temporal clustering of a reasonably exhibited pattern 
has been developed as stated below.

The construction of Knox statistics involves the partitions of time and space. Let A be the area under study, 
and T = [0,τ] with τ being the maximal observation time. Here we explain how to find the “optimal” cut points 
for distance measured in A and for time interval T. Consider a series of events that occurred within A × T, and 
let Ω(w,t) be the collection of these events (occurred at 0 < t1 < t2 < ⋯ < tn<τ):

where (xi,yi) is the location of the point wi; usually xi is the longitude and yi the latitude. Consider “all pairs” of 
events (wi,wj), i ≠ j; there were N = n(n − 1)/2 pairs. Let t0 ∈ T and d0 be possible cutoff points of time and distance 
measured for all 

(
wi ,wj

)
-pairs. Suppose m, s, and a0 satisfy:

where 1A is an indicator variable for event “A”. An odds ratio is calculated by OR0 = a0d0/b0c0 from the following 
2 × 2 table:
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With the cutoff (t0,d0), the table above shows that there are a0 pairs judged as being close in space and time. 
The choice of t0 and d0 is not really arbitrary, we will search all possible values of t0 and d0 to obtain the maximum 
odds ratio to generate the maximum association. We express it as ORmax = a1d1/b1c1, where (a1,b1,c1,d1) is the 
number of pairs of the corresponding cell. Therefore, the optimal cutoff value of space and time is determined 
based on ORmax.

To explore spatio-temporal clustering, the a1 pairs of events considered to be close to each other (in time 
and space) were connected with line segments, one segment for on pair. Once the optimality was determined, 
the independent clusters could be decided visually. Here “independence” is not used in the strict definition of 
probability, rather, is determined arbitrarily or visually as described in the Supplementary Information. Once 
the major clusters were determined, the other smaller clusters were treated as minor clusters. The major or minor 
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clusters were defined based on the size of the clusters, to be specific, the numbers of outbreak farms within the 
clusters. In this study, the major clusters contained at least 10 outbreak poultry farms, and clusters that contained 
between 5 and 9 outbreak farms were called minor clusters. The SDE method was implemented to reveal the 
transmission direction for each spatial cluster.

Likelihood ratio‑based method.  Instead of applying space–time scan statistics, the hierarchical cluster-
ing method using second-order likelihood-based scan statistics was performed in this study. Suppose that the 
surveyed region, denoted as g, is a sub-region of “population area” G. For example, G can be the entire country, 
and g can be a specific administrative unit (such as a county). Further, {Aj} is a set of townships that forms a 
partition of g:

Let the total number of poultry farms in the sub-region Aj be Tj, and there are Nj outbreaks in the defined 
time interval within a township Aj. Further, NG is the number of outbreaks in G, and TG is the corresponding 
total number. Figure 1 gives a scheme for the relationship between the investigated region g, with partition {Aj}, 
and the general population G. Here, we treat the outbreak probabilities { PAj}(j = 1,…,k) as a set of heterogene-
ous incidence probabilities. Due to substantial heterogeneity in outbreak probabilities, the K null hypotheses 
H

(G)
0j : PAj = PG versus H(G)

a : PAj > PG were considered separately, and the log-likelihood ratio

were obtained by a manner similar to those given in Kulldorff (1997) and Duczmal et al. (2006)9,17 with P̂G =
(NG−Nj)

(TG−Tj)
, 

P̂Aj =
Nj

Tj
 and P̂C = NG/TG under the likelihoods Lj(t) = P

Nj

Aj

(
1− PAj

)Tj−NjP
NG−Nj

G (1− PG)
TG−Tj−(N

G
−Nj) and 

L0(Pc) = (PC)
NG (1− PC)

TG−NG.
A question arises how to choose g as the “reference.” This consideration leads to the hypotheses parallel with 

the above hypotheses:

The local likelihood calculated for the “j-th” sub-region is relative to the reference region g and is no longer 
relative to G. This g is usually a much smaller area (compared to G) and is suspected to be an administrative 
unit with a relatively high incidence of avian influenza. Therefore, the recalculated individual likelihood using 
g as the new reference population becomes

with Ng =
∑K

1 Nj and Tg =
∑K

1 Tj ; Ng is the number of outbreaks and Tg is the total number of farms, respectively, 
within g. Furthermore, Pg is the probability of incidence estimated, under H(g)

a  , by P̂g = (Ng − Nj)/(Tg − Tj) . On 
the other hand, under H(g)

0j  , PAj = Pg ≡ PS. The likelihood calculated under H(g)
0j  is L0(PS) = PS

Ng (1− PS)
Tg−Ng 

with P̂S = Ng/Tg Consequently, the log-likelihood ratio is

When using different reference levels (G or g) to calculate likelihood ratio statistics, comparing the paired 
values of ( �j,G , �j,g ) on ∪{Aj} can reveal how the sub-regions with high incidence rates contribute to the calcula-
tion of spatial clustering. If the incidence rates of adjacent Ai and Aj ( i  = j ) are both high, they also have similarly 
high λ-values. We call this phenomenon “aggregation,” which is known as second-order clustering.

g = A1 ∪ A2 ∪ · · · ∪ AK .

(1)�j,G = 2{logLj

(
PAj , PG

)
− logL0(PC)}

H
(g)
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(g)
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(2)�j,g = 2
{
logLj

(
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)
− logL0(PS)

}
.

Figure 1.   A scheme for investigated region g with partition {Aj} and reference population G. In some Aj, for 
example, a black dot denotes the “spot” of an outbreak farm while a circle represents a non-outbreak. Within 
a defined period, there were a total of Tj poultry farms with Nj outbreaks. Notice that if Aj is the focus and 
assuming heterogeneity, g can also be the reference.
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However, the likelihood ratio evaluated in (1) or (2) has an inherent property, that is, compared with the 
“average incidence” under the homogeneity assumption, data with extremely low and extremely high incidences 
will have similar contributions to the likelihood ratio value (λ). For this reason, a reasonable measure that can 
distinguish between high and low incidence sub-regions is to compare the naïve difference between �j,G and �j,g:

We call Rj the AGC index. Generally, unless the statistical hypotheses were ill-posed, the λ-value should be 
positive since in formula (1), logLj

(
PAj , PG

)
 is always larger than logL0(PC) when the maximum likelihood is 

used; and similarly, in formula (2), logLj
(
PAj , Pg

)
 is always larger than logL0(PS) . If the area g = ∪{Aj} we cal-

culated or scanned an in-average high incidence area, then Rj tends to be positive in the sub-region Aj where the 
incidence is significantly higher and negative in the sub-region where the incidence is lower. Therefore, the 
well-known hierarchical clustering method can be used to perform one-dimensional clustering on {Rj}Kj=1

 to 
depict a complete “AGC map”.

(3)Rj = �j,G − �j,g .

Figure 2.   The geographical distribution map of poultry farm outbreaks in Taiwan from 2015. There were 926 
outbreaks in total (red dots). Due to the high incidence of the six counties in the southwest, we use a darker 
frame to mark their locations. The number in the lower right corner of the figure represents the number of 
poultry farm outbreaks and the total numbers of poultry farms of the six investigated counties in southwestern 
Taiwan in the year of 2015. The percentages were calculated based on the total outbreaks in each county relative 
to the total number of poultry farms per month and the year total. County names: CH Chang-Hwa, YL Yun-Lin, 
CY Chia-Yi, TN Tai-Nan, KH Kao-Hsiung, PT Pin-Tung. Each county was colored based on the percentage 
calculated by using the number of poultry farms from each county divided by the total poultry farms in Taiwan.
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Results
Spatial–temporal distribution of HPAI outbreak poultry farms.  Taiwan, the Asian flyway of migrat-
ing birds, experienced the largest poultry epidemic caused by HPAI H5 virus clade 2.3.4.4 in January 2015. A 
total number of 926 outbreak poultry farms were confirmed by laboratory diagnosis in 2015. The geographical 
distribution of the outbreak farms is shown in Fig. 2. Overall, Yun-Lin (YL) County had the highest number of 
outbreaks (48.7%), and Ping-Tong (PT) had the second highest (17.7%). Most outbreaks occurred in southwest-
ern Taiwan, which is a major location for poultry farms with nearly 50% of them situated in YL and Chang-Hwa 
(CH) counties. The monthly numbers in the six counties with abbreviations were listed in the table within Fig. 2. 
Partly due to the culling policy, which largely depleted the poultry farm population, 89.1% of the outbreak cases 
occurred in January and February across the six counties; hence, these two months were selected for temporal 
and spatial mapping in this study.

Knox‑based spatio‑temporal clustering.  The implementation of the Knox statistic suggests that the 
optimal cutoff point for spatial distance is 3 km while that for time is 7 days with details described in Supple-
mentary Information. By connecting pairs with line segments, we have visually identified spatial clustering from 
the appearance of the “bunches” of the overlapping part of the line segments. “Independent clustering” was not 
assessed by the strict definition of probability; instead, we define it by drawing the connecting lines, and the lines  
between the main clusters is better to be as sparse as possible. In this study, we used the arbitrary numbers of 
those clusters with “0” or smaller than “5” segments connected to each other to be identified as being “independ-
ent”. Therefore, a total of 11 major clusters were determined in the six counties with 2 in CH, 3 in YL, 1 in CY, 
1 in TN, 0 in KS, and 3 in PT county. Additionally, there are at least five other minor clusters, but these are not 
easy to be clearly defined (Fig. 3).

Since the counties YL and PT had the most cases in January and February 2015 (Table in Fig. 2), the SDE 
method was used to map the dynamic change of poultry farm outbreaks within these two months on a weekly 
basis. According to the partitions determined by Knox statistics, the weekly SDE estimates are shown in Fig. 4. 
Connecting the centers of the ellipses can show possible directions of diffusion. For two counties with the most 

Figure 3.   The partition of 6 counties (southwestern Taiwan) formed by Knox statistic under optimal space–
time cut-off; 11 major clusters are identified. For each circle, which represents a cluster, the distance (reported 
in the table) is defined as the maximum distance (kilometer, km) among all of the outbreak pairs. Duration 
denotes the dates between the first and the last outbreak farms in the circle, and N is the number of outbreaks in 
that circle.
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clusters identified, cluster #3 and cluster #5 in YL county had ellipse centers moving to the southeast; on the 
contrary, the center of cluster #4 moved towards the northwest (Fig. 4 upper panel). Although the clusters in PT 
county were quickly under control, cluster #9 had its center moving northward (Fig. 4 lower panel).

We further examined the week-to-week outbreak diffusion by connecting the two SDE centers from two 
adjacent weeks (say, ti and ti+1, i = 1,2,3…) and calculated the angle ( ∅ ) for several ti-ellipses for the two counties 
YL and PT (lower panel of Fig. 5). Since the long axis of the ellipse may indicate a direction of subsequent viral 
spreading, the plot of cos2(∅) versus the square of eccentricity (Ecc2) implies the sequential transmission of 
HPAI infection events. Provided that we recognize the upper right corner of Fig. 5 (upper panel), the change in 
direction from this week (ti) to the next week (ti+1) means that it is positively correlated with the high eccentricity 
of week ti, and thus, defining the first quadrant as cos(∅) > 0.8 and Ecc > 0.8. 33% (= 5/15) of the week-to-week 
diffusion meets this expectation.

Figure 4.   The week-by-week SDEs for individual clusters identified in YL (3 clusters, upper panel) and PT (4 
clusters, lower panel) county.
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Likelihood ratio‑based spatio‑temporal clustering.  We further examined likelihood ratio-based 
scan statistics at the small administrative units (very close to the “village”) resolution using two different refer-
ence populations and developed a second-order aggregation index, denoted as “AGC” map, for visualizing the 
dynamic change of HPAI poultry farm outbreaks. Monthly AGC maps for both YL and PT counties with the 
highest poultry farm outbreaks were depicted for January and February 2015 (Fig. 6). Comparing the dynamic 
changes in the aggregation values of the AGC index within two months also reveals the direction of transmission 
within each “independent” cluster.

Discussion
Knox‑based spatial mapping.  Spatial scan statistics is a widely used approach to detect spatial clustering, 
although several conventional cluster analysis methods such as gap-statistics or K-means were developed18–20. 
However, the use of spatial scan statistics requires model calibration by appropriately tuning the time–space 
window11,17,21. Knox (1964) proposed a method that can test the temporal and spatial interaction of infectious 
disease events without using any pre-defined value of distance or time to determine the clusters10,11. Knox sta-
tistics can be calculated by pairing all possible data points in a clearly defined geographic area and time interval. 
The pairs that are “close” in space and time can be tested10. Also, Knox statistic doesn’t require the prior knowl-
edge of reference population in spatial scan statistics, although the problem of “population shift” may exist16,22. 
Due to the incompleteness of the data, in our research, this problem was ignored by assuming the population of 
poultry farms remains stable within the reference population (i.e., Taiwan or smaller administrative regions such 
as counties or villages), despite the routine culling of the infected premises (IP) during the outbreaks. Adjust-
ment for population-shift bias will be pursued in the future study10,11,23.

Another limitation of using Knox-based algorithm is that no rigorous statistical method has been developed 
as a formal test to give an exact or approximate (in terms of large sample theory) p-value to assess the significance 
of space–time two-dimensional searching for the optimal cutoff points, although Mantel (1967) proposed to use 
the permutation methods16. The optimality in Knox-based clustering refers to a maximal association measure 
(here, odds ratio) between the two factors space and time. For the case of one-dimensional search for optimal 
selection, statistical literature called it a problem of “maximally selected chi-square statistic”24. Their derivation 
led to the “sup” (supremum) of a Brownian bridge process (or a tied-down Brownian motion process) as a testing 
statistic, which has a well-known asymptotic distribution and a prepared table for the significance level (p-value). 
However, Miller and Siegmund’s result cannot be directly used in our study, because their search for maximizing 
the association is one-dimensional, whereas our searching for optimal association is “two-dimensional” (space 

Figure 5.   (Upper panel) The relationship between the eccentricity of the SDE in the two counties (YL and PT) 
and the angle ( cos(∅)) between two SDEs depicted for 2 weeks (ti and ti+1). Squaring makes the data points look 
better dispersed. Two dotted lines are taken for eccentricity = 0.8 (Ecc2 = 0.64) and cos(∅)=0.8 ( cos2(∅) = 0.64 ). 
(Lower panel) Illustrating the calculation of cos(∅).
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plus time). Turnbull et al. (1990) has also made a similar attempt to find unrelated clusters of chronic diseases 
such as leukemia, but the method is computationally demanding25,26.

Developing a statistical test is not our purpose here as we only aim to identify a reasonable clustering pattern 
exhibition. Based on the setting of Knox’s, Barton and David (1966) proposed an “intersection” approach to 
obtain spatiotemporal clustering27. They proposed to connect event pair line segments with temporal and spatial 
clustering to form a “temporal map” and “spatial map”, respectively. Finally, these maps are combined to get a 
spatiotemporal clustering graph16. This approach was reasonable but not always easy to achieve because in the 
region where the number of outbreaks is large, and this is our case, thousands of lines are entangled, and visu-
ally discriminating different clusters could be difficult. We showed in this study that the Knox-based approach 
could still display spatiotemporal clusters, particularly when the outbreaks occur in multiple places (Fig. 3). 
When circling the major spatial clusters, each circle has a “diameter” within 3 km that is the size of the control 
zone established once the HPAI-infected farm is identified in Taiwan. When an IP is reported, all poultry from 
that particular IP will be culled, and all farms within the 3 km radius of that IP will be targeted for intensive 
surveillance. Therefore, additional clusters outside the 3 km control zone stand for the spreading of HPAI viruses 
requiring epidemiological investigation.

AGC mapping.  Other than the Knox-based spatial clustering approach, we further developed the AGC 
map based on the likelihood ratio to describe spatial clustering in this study. The basic space–time statistics 
widely apply scan statistics with Poisson/binomial distribution to compare the disease risk within and outside 
the scanning window. Instead of arbitrary specification, a trial-and-error approach to explore spatial and tem-
poral parameters, including the maximum spatial window (25 and 50% of the population at risk), the maximum 
temporal window and p values (< 0.05 and < 0.001), is necessary. In contrast with the traditional approach of 
searching spatial and temporal space for clustering, the likelihood ratio statistics constructed in this study con-
siders two “reference populations” to serve as the basis for statistical testing on global and local spatial clustering. 
Then, the λ-values from likelihood ratio scan statistics or AGC index are used to get the second-order clustering 
for visualization of spatio-temporal clustering changes. Such inherent property of AGC index has been largely 
ignored and was demonstrated as a visual tool for spatio-temporal mapping here. Compared to the basic space–

Figure 6.   AGC maps, January and February 2015, for YL and PT counties. Resolution is set at “village-level”. 
Incidence levels based on AGC values are represented by different colors: white, blue, yellow, orange, and red, 
which mean no case (AGC value = 0), slight outbreak (AGC value < 0), moderate (0 < AGC value ≦ 2), severe 
(2 < AGC value ≦ 4) and extremely severe (AGC value > 4) outbreaks, respectively.
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time statistics, which deliver the outputs of the first most likely cluster and secondary clusters (if p value < 0.05 
with no geographical overlap), we propose a map based on drawing the AGC index, which can capture the aggre-
gation pattern of disease clusters, and therefore is very useful for displaying hotspots. That is, the aggregation 
of those sub-regions with higher Rj or AGC index is called hotspots. The identified major clusters are similar in 
both Knox-based and AGC mapping methods (Figs. 3, 6). Although the AGC map inevitably depends on the 
choice of the critical value of the AGC index, the difference between the two results is small. These major spatial 
clusters or hotspots could share common environmental risk factors contributing to the poultry farm outbreaks 
by HPAI, which we published previously2. By monthly depicting AGC maps, the changes in the hotspot pattern 
over time also provide clues on the direction of HPAI viral transmission. Tildesley et al. provided an extensive 
discussion on the spread of the disease and its impact28. If the AGC maps of different months remain unchanged, 
it means that the locations of hotspots are very “stable”, which imply the effectiveness of control measures imple-
mented by BAPHIQ within the established 3-km control zone2. On the contrary, the AGC maps will help to 
identify the potential local regions, which require more stringent control measures in the future. Note that the 
formation of AGC maps depend on the choice of cutoff point for the number of clusters. The traditional elbow 
method based on minimizing the overall within-cluster variation can be applied, or the more modern gap sta-
tistics can be used in the future18,19.

The limitation of using AGC mapping in this study is the difficulty to describe the statistical property of the 
AGC index since it is far beyond the scope of the current research. In Rj = �j,G − �j,g , each  is a “likelihood 
ratio”, and the statistical (large sample) properties are well known for the likelihood ratio statistics. However, 
the calculation of the variance of Rj (AGC index) inevitably involves the correlation between �j,Gand�j,g , which 
is not an easy task although it can be pursued by a bootstrap re-sampling scheme29. This will not be presented 
in this paper.

Visual tools for mapping viral transmission direction.  Our initial attempt was to apply the regression 
model proposed by Zinszer et al. to estimate the local spreading of the Ebola epidemic30. The model points out 
that for an outbreak that occurs at calendar time Ti and location ( Xi , Yi ), there is a corresponding explanatory 
variable (can be a vector) Zi, Ti+1 is the time of the next (Ebola) outbreak, so the “interval time” τi = Ti+1 − Ti 
between two adjacent events can be modeled as:

where f1 and f2 are two functions that could be chosen as polynomials. The parameters β1 and β2 are inter-
preted as the reciprocal of the transmission rate in the X and Y directions respectively and are usually used as 
the longitude (X) and latitude (Y) of the outbreak event indexed by “i”. The magnitude of changes in X and Y is 
random, implying the velocity (speed plus direction) of transmission. If the time interval is fixed at 1 week, the 
change of velocity by week visualizes the change in direction and speed of viral transmission by considering the 
first two events that occurred in each township to estimate the direction according to the formula. However, we 
found that Zinszer’s approach may not be suitable here (Supplementary Fig. S1) for the following reasons. First, 
multiple events may occur in a short period, and the location of the earliest event may sometimes be difficult to 
determine due to delay of case reporting, recall bias, or heterogeneous and mild outbreak symptoms. Second, 
when the transmission space in question is relatively small, the variability of velocity (i.e. transmission speed) 
will increase. Thirdly, it is also difficult to distinguish transmission direction within and between spatial clusters, 
where different local and non-local factors have different impacts on the outbreak events.

Although there is no universally feasible method to estimate the direction of transmission, the use of SDE 
to visualize the geographical distribution of a series of social, biological, or environmental events remains 
attractive31–34. In this study, SDE is applied to individual spatial clusters, defined by the Knox method, to reveal 
its local transmission by week. By connecting the consecutive centers of weekly SDEs, the direction of transmis-
sion can be easily visualized, which may imply the playing roles of local factors, such as wild bird movement, 
transport vehicles, human activities, or other meteorological factors acting within the spatial clusters7,35–39. Other 
non-local factors, such as factors related to poultry market supply networks or the long-distance movement of 
specific bird species, contributing to the HPAI transmission between spatial clusters can be investigated and 
differentiated from the local factors40–42. Careful identification of influencing factors can help precautionary 
measures, public health control, and prevent further outbreaks.

In conclusion, a Knox-based combined SDE visualization tool was developed in this study to identify the 
spatio-temporal clustering of poultry farm HPAI outbreaks in Taiwan. Such a method is anticipated to be appli-
cable to other infectious diseases and countries. On the other hand, AGC maps in regular intervals provide a 
quantitative risk at the regional level, and its dynamic change further indicates the direction of transmission. 
Compared to the one-stage aggregation approach, Knox-based and AGC mapping two-stage algorithms were 
more sensitive in small-scale spatio-temporal clustering. Our previous study suggested high poultry farm density, 
poultry heterogeneity index, non-registered waterfowl flock density and high percentage of cropland coverage 
are strongly associated with the spatial clustering of H5N2 and H5N8 circulations during 2015 and 2017 among 
poultry farms in Taiwan2. The direction of dynamic viral transmission among poultry farms identified in this 
study could further indicate the local environmental factors, such as highway systems for vehicle transportation 
and habitats overlapping with wild birds, which require further investigation in the future.
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(4)τi = β0 + β1Xi + β2Yi + f1(Xi)+ f2(Yi)+ γ ′Zi + εi ,
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